Ulam-Hyers-Rassias Stability of a Hyperbolic Partial Differential Equation
نویسندگان
چکیده
منابع مشابه
Generalized Hyers - Ulam - Rassias Stability of a Quadratic Functional Equation
In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a new quadratic functional equation f (2x y) 4f (x) f (y) f (x y) f (x y) + = + + + − −
متن کاملHyers–ulam–rassias Stability of a Generalized Pexider Functional Equation
In this paper, we obtain the Hyers–Ulam–Rassias stability of the generalized Pexider functional equation ∑ k∈K f(x+ k · y) = |K|g(x) + |K|h(y), x, y ∈ G, where G is an abelian group, K is a finite abelian subgroup of the group of automorphism of G. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Rassias’ Stability Theorem that appeared in his paper: On the stability of the lin...
متن کاملHyers-ulam Stability of Butler-rassias Functional Equation
In 1940, Ulam [9] gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the following question concerning the stability of homomorphisms. Let G1 be a group and let G2 be a metric group with a metric d(·,·). Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfi...
متن کاملHyers-Ulam-Rassias stability of generalized derivations
One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...
متن کاملMittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISRN Mathematical Analysis
سال: 2012
ISSN: 2090-4665
DOI: 10.5402/2012/609754